

The construction and testing of RF Coils used to flip ³He polarization

Joelle Baer

Presentation Overview

- °What is ³He used for at the NIST Center for Neutron Research (NCNR)?
- °How do you flip the ³He polarization?
- oWhat are the steps in creating and testing such a device?
- °Findings from this summer's work

What is a ³He cell?

Spindependentneutronabsorption

K.P. Coulter et al, NIM A 288, 463 (1990)

What is a ³He cell?

- Back-filled with 3 He and a small amount of N_2
- Combination of distilled Rb/K
- Different cell characteristics

Cell for Typical Beam Size (Slider)

Wide Angle Cell (Reliance)

What is polarized ³He used for at the NCNR?

Polarizing the Cell

Spin Exchange Optical Pumping (SEOP)

- Near infraredlaser
- Electrons are polarized
- °Spin exchange with ³He
- Lengthy process

Polarization Analysis using ³He

- Probe magneticproperties from a sample
- Measure four cross sections
- •Example:

analyzer

polarizer

Flipping the ³He Polarization

- °B₀ Field compensation on end caps
- Neutron shielding on Nend
- Sleeve createsperpendicular B₁field
- No material in neutron beam

Flipping the ³He Polarization

- Oscillating B-field, B₁
 perpendicular to the static B₀
- °³He precess around B₀
- Adiabatic Fast Passage(AFP) NMR

B₀ along cylindrical axis of solenoid

Why minimizing AFP loss is important?

To flip more often than 5 min (3.3 mHz), it is desired to have a flipping efficiency close to 0.9999 (loss of 10⁻⁴)

Efficiency determined by the Amplitude and Rate used in AFP NMR

Building the RF Coil

- Sheet of Teflon rolled into a cylinder
- Hole for cell tip
- Slits in sine distribution

Sleeve in solenoid with constant B₁ due to slit distribution

Building the RF Coil

- Wound withcopper wire
- o Down the inside, along the rim's edge, up the inside

Building the FID NMR Coil

FID NMR Coil

- Free Induction Decay(FID) NMR
- Coil placed around cell tip
- Information about cell polarization and lifetime

Testing the RF Coil

- ©Components to test:
 - Match the RF coil to the B field of the solenoids
 - For both 55kHz and 90kHz
 - Sweep amplitude for sleeve and solenoid pairs
 - Sweep rate for sleeve and solenoid pairs

Testing the RF Coil

- Information about polarization from Amplitude (Amp) and Lifetime (T2)
- Take FID NMR, flip cell,
 take another FID NMR

Testing the RF Coil

Trial #	# of flips	Amp Bef	Amp Aft	Phase Bef	Phase Aft	Aft/Bef	Loss	% Loss	Af	ft/Bef	Loss	%Loss
Rate: 650 kF	Hz/s								Av	verages	,	
1	2000	.07615	.07154	220	224.9	0.93942	3.125E-05	0.00312		0.93485	3.4E-05	0.00337
2	2000	.07154	.0665	224.9	229.4	0.93027	3.614E-05	0.00361			`	

Let
$$d = \frac{Amplitude \ After}{Amplitude \ Before}$$

$$Loss = 1 - \sqrt[\#of \ flips]{d}$$

$$d = \frac{.0665}{.07154} = 0.93027$$

$$Loss = 1 - \sqrt[2000]{.93027} = .0000361$$

Testing the RF Coil

Parameter Results

- Weasley, Potter, and Granger all same size sleeve
- Variation in optimal settings
- Difference possible due to construction

OPTIMAL SLEEVE & SOLENOID PARAMETERS

Sleeve	Solenoid	Amp	Rate
Weasley	Gemini	2.7V	930kHz/s
Weasley	Pollux	2.9V	910kHz/s
Weasley	Vulcan	2.5V	-
		4.3 V	925kHz/s
Potter	Gemini	3.25 V	880kHz/s
Potter	Pollux	3.4 V	930kHz/s
Potter	Vulcan	2.5 V	980kHz/s
Granger	Gemini	3.6V	880kHz/s
Granger	Vulcan	3.7V	870kHz/s
Hagrid	Pollux	4.25V	650kHz/s

Acknowledgements

Many thanks to

The SURF Program SURF Directors NCNR Staff Wangchun Chen Shannon Watson Tom Gentile and Gordon Jones

